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Classifying Spacecraft Magnetospheric Region with Ambient
Plasma Sensing and Support Vector Machines

MMS and Regions of Earth’s Magnetosphere

e Farth’s magnetosphere can be partitioned
regions with unique properties

e The Magnetospheric Multiscale Mission (MMS) is a high earth

orbit magnetospheric mission

® Flight calibration of MMS’s in-situ plasma instrument (FPI)

utilizes different plasma in different regions

e Calibration can be automated if we can automatically classify

flight region between:
o Magnetosphere

o Magnetosheath

o Solar Wind
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Model to Classify Region
e The Linear-kernel Support Vector Machine (SVM) is a

classification model that learns from labeled examples
® Trained using hand-labeled examples from ambient plasma
data.

o SVM fits a barrier between points
that maximizes ine distance
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o In 2D, thisis a line ; )
o In 3D, this is a plane ;
o In ND, this is a hyperplane ‘
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Input Data to Model

e Total dataset size of about 130 labeled points
® Electron and ion particles sensed from ambient
JENUERS el
® For each of ions and electrons:
o Number density mean/variance
o Vx, Vy, Vz, mean/variance
o Scalar Pressure mean/variance
o Scalar Temperature mean/variance
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Note: Above shows classifier trained with only electron
temperature and electron density, in order to plot in
2D. Actual performance is better.

Classification Process

e Algorithm produces a vector of weights over the input
parameters for each of the classes.

e Dotted with input:
o Very positive — likely in category
o Very negative — unlikely in category

® \Vector elements correspond to individual effect of
input parameter on classification
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Interpreting Model Weights

® Linear SVM weights are interpretable and express how much the input variable is for or against that category
® For general kinds of SVMs (non-linear), weights are not interpretable

® This interpretation agrees with prior knowledge of the magnetospheric physics (see below)

® Weights scale down as natural magnitude of variable scales up, and vice versa
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e A simple linear algorithm and minimal code was able to provide robust predictive powers when paired with

the right data

® Provided robust automation where human-in-the-loop was previously required
® Weights learned by algorithm agree with our knowledge of the physics

Acknowledgements

® Special thank you to the MMS mission, the Fast Plasma Investigation instrument team, and the NASA

Heliophysics Program



